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Abstract—Two toxic-unit models that estimate the toxicity of trace-metal mixtures to benthic communities were compared. The chronic
criterion accumulation ratio (CCAR), a modification of biotic ligand model (BLM) outputs for use as a toxic-unit model, accounts for the
modifying and competitive influences of major cations (Ca2þ, Mg2þ, Naþ, Kþ, Hþ), anions (HCO�3 , CO2�

3 ,SO2�
4 , Cl�, S2�) and

dissolved organic carbon (DOC) in determining the free metal ion available for accumulation on the biotic ligand. The cumulative
criterion unit (CCU) model, an empirical statistical model of trace-metal toxicity, considers only the ameliorative properties of Ca2þ

and Mg2þ (hardness) in determining the toxicity of total dissolved trace metals. Differences in the contribution of a metal (e.g., Cu, Cd,
Zn) to toxic units as determined by CCAR or CCU were observed and attributed to how each model incorporates the influences of
DOC, pH, and alkalinity. Akaike information criteria demonstrate that CCAR is an improved predictor of benthic macroinvertebrate
community metrics as compared with CCU. Piecewise models depict great declines (thresholds) in benthic macroinvertebrate
communities at CCAR of 1 or more, while negative changes in benthic communities were detected at a CCAR of less than 1. We
observed a 7% reduction in total taxa richness and a 43% decrease in Heptageniid abundance between background (CCAR¼ 0.1) and the
threshold of chronic toxicity on the basis of continuous chronic criteria (CCAR¼ 1). In this first application of the BLM as a toxic-unit
model, we found it superior to CCU. Environ. Toxicol. Chem. 2010;29:2432–2442. # 2010 SETAC
Keywords—Trace metals Aquatic invertebrates Biomonitoring Ecotoxicology Water chemistry
Elevated concentrations of acid and trace metals in surface
water draining mineralized and historically mined lithologies
are common in Colorado, USA [1,2]. Exposure to elevated
concentrations of trace metals adversely affects aquatic pop-
ulations and communities [1]. Differential sensitivities of indi-
viduals to trace metals result in population-level effects that
culminate in an assemblage shift from a sensitive to a metal-
tolerant community [1,3]. These properties of benthic macro-
invertebrate communities make them useful for evaluating the
ecological effects of trace-metal pollution in streams.

Trace-metal uptake by aquatic organisms can occur by
association with sediment, directly from the water column,
or through dietary exposure [4]. However, total recoverable
metals (i.e., the sum of dissolved, colloidal, and solid metal that
can be liberated via extraction with mineral acid) from a water
sample are not good predictors of toxicity to aquatic organisms
[5–7]. Current regulatory models treat the total dissolved metal
and the dissolved free metal ion as the primary causes of toxicity
in aquatic organisms [7,8].

The bioavailability of a trace metal is affected by a suite of
constituents found in surface water [6]. The activities of free
metal ions are controlled by factors including pH and alkalinity
[9]. Interactions with dissolved organic carbon (DOC) and
major anions (e.g., HCO�3 , CO2�

3 , Cl�) decrease the concen-
trations of trace metals available to cause toxicity [10]. Com-
petition with major cations (e.g., Ca2þ, Mg2þ) for the sites of
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toxic action decreases the amount of metal bound to those sites,
thus ameliorating toxicity ([5,11–13]; http://www.hydroqual.-
com/wr_blm.html; [14]). Because each individual trace metal
interacts with these modifying water-quality parameters and
sites of toxic action differently to form a variety of metal
species, no universal way to quantify the bioavailability and
toxicity of trace metals exists [6].

More frequently than not, streams are impaired by a mixture
of trace metals at chronic concentrations that act additively to
cause toxicity to aquatic organisms [1]. The cumulative crite-
rion unit (CCU) model is a toxic-unit approach that predicts
additive toxicity of trace-metal mixtures to aquatic organisms.
The CCU relates the total dissolved concentration of a trace
metal to the ambient water quality criterion continuous con-
centration (CCC) for that metal. The criterion for each metal is
hardness—adjusted to account for the protective effect of Ca2þ

and Mg2þ using an equation derived from empirical laboratory
observations [7]. Incidentally, in these observations it was
found that pH and alkalinity co-varied with hardness and, as
a result, these hardness adjustment equations indirectly account
for the role of pH and alkalinity (pH, alkalinity, and hardness are
covariates) on trace-metal toxicity. However, this is an empirical
model and not a mechanistic approach to approximating the
toxicity of trace metals to aquatic organisms, making it inappro-
priate for water in which pH, alkalinity, and hardness do not co-
vary [8]. More importantly, these correction factors also do not
adjust for the role of other aqueous constituents found in surface
waters (e.g., DOC, Cl�, SO2�

4 ) that also may play an important
role in reducing the activity of free metal ions in solution.

The biotic ligand model (BLM) is an algorithm that predicts
acute toxicity of dissolved trace metals, such as the free metal
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ion, to aquatic organisms (e.g., Cladocera, fish) [11–13].
Coupled geochemical speciation models (CHESS and WHAM
V) are used to quantitatively account for the influence of DOC
and major cations and anions on dissolved trace-metal bioavail-
ability [10,14]. Empirical data demonstrate that a constant
amount of toxicity results from a critical accumulation of a
free metal ion on an organism’s respiratory surface, which is
called the biotic ligand [5,11–13]. Thus, the BLM calculates the
fraction of the total dissolved trace metal (free metal ion) in a
water sample that is available to accumulate on the biotic
ligand. Toxicity is predicted when the ratio of metal accumu-
lated on the biotic ligand exceeds the amount observed to cause
mortality to 50% of a population of standard test organisms.
Because the BLM can predict the concentration of metal
at which 50% mortality occurs to a population of standard
test organisms, usually within a factor of 2, the U.S. Environ-
mental Protection Agency (U.S.EPA) has adopted the model
to establish site-specific water-quality criteria for Cu [8].
Although BLM models for Cd and Zn (metals of interest
in this investigation) as well as for other metals have been
developed, these models currently are not employed for regu-
latory purposes.

Biological assessments such as the Environmental Monitoring
Assessment Program, Regional Environmental Monitoring
Assessment Program, Wadable Streams Assessment, and the
current study, the Central Colorado Assessment Program, are
conducted at large spatial scales (e.g., continental United States,
Colorado, the central Colorado Mountains) over which climate,
vegetation, and geology change from site to site. Commensurate
with these changes in landscape characteristics are changes in the
concentrations of major cations, anions, and DOC that alter the
bioavailability of contaminants in aquatic ecosystems [2,15,16].
Regional-scale biological assessments of trace-metal contamina-
tion would benefit from a model that incorporates site-specific
variation in aqueous chemistry to more precisely approximate the
bioavailable fraction of trace metals to aquatic organisms [17,18].

The BLM is capable of modeling the bioavailable fraction of
dissolved trace metals in surface water. However, the BLM was
designed to predict acute toxicity (i.e., 48-h concentration of
metal at which 50% mortality occurs) to fish and was empiri-
cally calibrated to predict toxicity to aquatic invertebrates
(i.e., Daphnids) [19]. As a result, some of the underlying
mechanisms, although robust, are not specific to the physiology
of aquatic invertebrates [19]. For example, the current BLM
may not appropriately model Ca2þ and Mg2þ in competitive
interactions with trace metals for the biotic ligand in aquatic
invertebrates [19]. The primary assumptions are that all aquatic
organisms have a biotic ligand that responds to trace metals in
the same general way and that the biotic ligand is the primary
pathway of toxicity. However, the BLM has not been tested to
determine whether the criteria set by the model are protective of
indigenous organisms under field conditions.

Applied as intended, the BLM is not especially useful for
bioassessment. The primary output of the BLM (concentration
of metal at which 50% mortality occurs) is not ecologically
meaningful, because it does not describe possible consequences
to higher levels of biological organization (e.g., populations,
communities, ecosystems) [20]. Neither does the model predict
the effects of metal mixtures on aquatic communities, a sit-
uation more common in areas influenced by acid rock drainage
[1,2]. If the BLM is to be employed to set site-specific water-
quality criteria protective of aquatic communities, it should be
capable of predicting the responses of natural populations and
communities in streams [21].
We have developed a method that uses the BLM for the
purpose of ecological assessment of trace-metal pollution in
natural systems. We developed a toxic-unit model of additive
trace-metal toxicity derived from BLM outputs and compared it
with another toxic-unit model, CCU. This new model, the
chronic criterion accumulation ratio (CCAR), is derived from
BLM outputs, thereby incorporating current theory about the
interactions between aqueous constituents (i.e., hardness, DOC,
pH) that affect trace-metal toxicity and accumulation of bio-
available trace metals on the respiratory surface of aquatic
organisms. In contrast, the CCU accounts only for the influence
of hardness on trace-metal toxicity through the use of empirical
equations derived from single-species toxicity tests.

The primary objective of this research is to explore the use of
the BLM as a bioassessment tool to predict responses of benthic
macroinvertebrate communities to trace metals in streams
throughout Colorado. We make comparisons between this
new BLM-derived estimate of trace-metal toxicity and the
model of additive toxicity on the basis of hardness-adjusted
chronic criterion values. Cadmium, Cu, and Zn are the metals of
interest in this investigation because they have been identified
as compounds of concern for this region by previous research-
ers, they are common to the mineralogy of the region, and they
have BLM models developed and commonly available [1,2,13]

MATERIALS AND METHODS

Development of toxic-unit models

Because most trace-metal–contaminated streams are influ-
enced by a mixture of metals at chronic concentrations, a
measure of chronic toxicity resulting from metal mixtures
was necessary. Water-quality criteria for individual metals
represent concentrations that, when exceeded, likely harm
aquatic organisms. Because criterion values are established
for individual metals, alternative models are necessary to
estimate toxic effects of trace-metal mixtures. Although most
research investigating the toxicity of trace-metal mixtures has
focused on acute effects, previous studies have shown additive
effects at chronic concentrations [1,12,19]. The CCU was used
to evaluate toxicity resulting from trace-metal mixtures and
assumes that interactions among trace metals are additive. The
CCU is defined as the ratio of the measured trace-metal con-
centration to the U.S. EPA hardness-adjusted chronic criterion
value, summed for each metal (Cd, Cu, Zn) at a location [7]. The
cumulative criterion unit is calculated as:

CCU ¼
X

i

mi

ci
(1)

where mi is the total dissolved trace-metal concentration and ci

is the hardness-adjusted continuous chronic criterion (CCC)
value for the ith metal. Because water hardness affects toxicity
and bioavailability of some trace metals, criterion values for Cd,
Cu, and Zn were modified to account for variation in water
hardness among streams [7]. For example, at a water hardness of
100 mg/L (CaCO3), criterion values for these three trace metals
would be 0.25, 9.0, and 120 mg/L, respectively. The CCC is
developed by averaging toxicity test data across species and
genera to determine a concentration of trace metal that will be
protective of 95% of the species at a specific site. Therefore, a
CCU value of 1.0 or less represents a mixture of metal concen-
trations that should be protective of aquatic communities. This
model is a common approach for assessing toxicity caused by
metal mixtures and will be used to evaluate the BLM predictions.
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Because the BLM predicts acute toxicity resulting from
individual trace metals, it must be modified to account for
metal mixtures and for comparison with the CCU model. The
chronic criterion accumulation ratio (CCAR) is a procedure that
modifies BLM outputs for use as a toxic-unit model similar to
the CCU model and assumes additive toxicity of trace-metal
mixtures on the basis of BLM-predicted outputs. The CCAR is
defined as the ratio of the BLM-calculated accumulated free
metal ion on the biotic ligand to that accumulated on the biotic
ligand in water at the U.S. EPA criterion value, summed for
trace metals of interest at a location. The CCAR is calculated as
follows:

CCAR ¼
X

i

BLM calculated site specific ½gill metal�
BLM calculated ½gill metal� at CCC

(2)

where BLM calculated site-specific [gill metal] and BLM
calculated [gill metal] at CCC are measurements developed from
BLM outputs. The BLM calculated [gill metal] is the BLM
predicted accumulation of the ith trace metal on the biotic ligand
(gill surface), calculated by running the BLM in speciation mode,
using site-specific water quality parameters (temperature, pH,
DOC, alkalinity, Ca2þ, Mg2þ, Naþ, K, SO2�

4 , S2�,Cl�). The
BLM calculated [gill metal] at CCC is the BLM predicted
accumulation of the ith trace metal on the gill surface, calculated
using the ‘‘normalization chemistry’’ water-quality parameters
from Table 1 of the U.S. Environmental Protection Agency water
quality criterion document [8] and the ith metal CCC [7]. A
CCAR of 1.0 or less represents a mixture of metal concentrations
at or below CCC, accounting for the modifying effects of several
water-quality parameters known to alter trace-metal bioavail-
ability, and protective of an aquatic community. We used CCAR
to predict toxicity to benthic communities, individual species of
which have differential sensitivity to trace metals. By using the
CCC, a value derived to protect aquatic communities, rather than
a species-specific response point such as the amount observed to
cause mortality to 50% of a population of standard test organisms
for Daphnids or fathead minnows, we can predict toxicity more
generally to the entire benthic community. Specifics on model
constants and assumptions can be found in HydroQual [13].

Study area and sampling strategy

The study area is central Colorado from Wyoming to New
Mexico, USA, an area of approximately 54,000 km2 that
Table 1. Benthic macroinvertebrate metrics selected on the basis of performa
communit

Metrics Clements et al. [11]a Crane et al. [17]b

Richness metrics
Total taxa richness X
EPTf richness X X
Abundance metrics
Total abundance X
Mayfly abundance X
Heptageniidae abundance X
Functional metrics
Scrapper abundance X
Predator abundance X

a Metrics distinguished different levels of metals contamination based on cumula
b Metrics used to assess European Water Framework Directive Quality Standards
c Metrics that detect differences between sites that were above or below environm

USA.
d Metrics were significantly correlated with CCU metric in Wales and Cornwall,
e Metrics detected differences in streams contaminated with metals in Dalarna Pr
f EPT¼ Ephemeropteraþ PlecopteraþTrichoptera.
includes most of the Rocky Mountains in Colorado and repre-
sents approximately 20% of the land area of Colorado (Fig. 1).
This area includes a geographic feature called the Colorado
Mineral Belt that has been exploited for the past 150 years for its
mineral resources. The sample sites in the current study are at
high altitude, ranging from 2,330 to 3,550 meters above sea
level. The climate of the study area is temperate continental,
with generally more than 50 cm precipitation per year, espe-
cially at higher altitudes. Much of this precipitation occurs as
snow in winter or as rain, primarily between June and August.
Vegetation ranges from deciduous cover at lower altitudes and
in riparian zones, to conifer forests, and at the highest altitudes,
open tundra. Soils within the study area are thin (rarely greater
than 10 cm) to nonexistent, the latter occurring in areas domi-
nated by bedrock outcrops. Thicker (up to a meter or more)
immature soils, as well as unconsolidated overburden, occur
intermixed at lower elevations and along streams.

Small catchments (first to third order) predominantly under-
lain by a single rock-type categorized on the basis of lithology
were targeted for sampling. The purpose of this sampling
strategy was to target a large variety of water-quality conditions
resulting from interaction with the underlying rocks to test the
BLM and develop lithologic-specific geochemical baselines
[2,22]. This approach uses geological principles to identify
locations expected to have low metal concentrations and loca-
tions in which metal concentrations are expected to be high.
Each catchment was characterized as to the presence or absence
of geological processes that influence the acidity and trace
metals found in catchment bedrock (i.e., hydrothermal alter-
ation and ore deposit formations) and the presence or absence of
mining. Further details about how hydrothermal alteration and
ore deposits were used for site selection can be found in Schmidt
et al. [23].

Geochemical and benthic macroinvertebrate samples were
collected from 153 catchments during base-flow conditions in
the summers of 2003 (n¼ 20), 2004 (n¼ 41), 2005 (n¼ 38),
2006 (n¼ 31), and 2007 (n¼ 23) (Fig. 1). All geochemical and
benthic macroinvertebrate samples were either collected simul-
taneously, or in a few cases, within a 10-d period of each other.
Geographic Information Systems (ArcGIS 9.2) were used to
delineate catchments for sampling, and digital elevation models
(30� 30 m) were used to define catchment boundaries, area,
slope, and relief ratio [24]. The Colorado Vegetation Model
(http://warnercnr.colostate.edu/�davet/cvm.html; 30 m� 30 m
nce in past regional-scale assessment of the effects of metals on stream
ies

Griffith et al. [33]c Hirst et al. [18]d Malmqvist et al. [32]e

X X X
X X

X X

tive criterion unit (CCU), Colorado Rocky Mountains, USA.
for dissolved metals in England and Wales, United Kingdom.

ental quality standards for water or sediment, Colorado Rocky Mountains,

United Kingdom.
ovence, Sweden.



Fig. 1. Map of the United States showing the central Colorado study area in the Rocky Mountains from New Mexico to Wyoming.
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resolution) was used to eliminate areas of development (i.e.,
agricultural, residential, and commercial development) to make
sure we targeted catchments that were not influenced by anthro-
pogenic factors other than mining.
Physicochemical parameters

Current velocity was measured with the U.S. Geological
Survey Price pygmy current meter and depth were measured
across the stream channel at 15 to 25 intervals, depending on
stream width. Stream discharge ( f 3/s) was calculated using
the continuity equation. Stream substrate size measurements
and densiometer (Forest Densiometers, Model A) readings of
canopy cover were collected from each location where benthic
samples were collected from 2003 to 2005. After the third year
of the study, we screened the data (i.e., exploratory statistical
analysis) to determine whether local habitat variables were
important determinants of benthic macroinvertebrate commun-
ity structure. Stream substrate size (D10, D50, D95, frequency
of all size classes from 22.5 to 180 mm) and canopy cover
contributed little to no descriptive power in statistical models
predicting biological responses (Bray-Curtis similarity); these
two habitat parameters were not collected in the final two years
of the study.

Water samples in 2004 to 2007 were collected using methods
described in Wilde et al. [25] to meet the requirements of the
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BLM [13,25]. Routine water-quality parameters (temperature,
conductivity, and pH) were measured in the field using a Horiba
D-24 combination meter [26]. Meters were calibrated at the
beginning of each day with certified standards and checked
periodically throughout the day. All water samples processed
in the laboratory were filtered through an Acrodisc Premium
25-mm Syringe Filter with 0.45-mm nylon membrane at the site
and stored at 48C until analyzed. Water samples for DOC were
filtered through a 0.70-mm glass-fiber filter, acidified with
concentrated hydrochloric acid (12 molar) to a pH of less than
2, and stored in baked amber glass bottles. A Shimadzu TOC-
5000A total organic carbon analyzer was used to measure DOC.
Dissolved trace-metal samples were acidified with concentrated
nitric acid (13 molar) to a pH less than 2 and stored in poly-
ethylene bottles. Samples for anions were collected and stored
in polyethylene bottles. Water analyses were conducted at the
analytical laboratories of the U.S. Geological Survey Geologic
Discipline Laboratory in Denver, Colorado. Concentrations of
major cations (Naþ, Kþ, Mg2þ, and Ca2þ) were analyzed by
inductively coupled plasma-atomic emission spectrometry,
whereas trace-metal concentrations (Cd, Cu, Zn) were analyzed
by inductively coupled plasma-mass spectrometry, and major
anions (Cl�, F�, NO�3 , SO2�

4 ) were measured by ion chroma-
tography [26]. High concentrations of SO2�

4 (>25 mg/L) were
determined by inductively coupled plasma-atomic emission
spectrometry, and alkalinity was determined by titration [26].
For metal concentrations below detection, half the detection
limit was substituted as the value.

Analysis methods for 2003 differed in that major cations and
trace metals were analyzed by flame (Zn) and furnace atomic
absorption (Cd and Cu) spectrophotometry (PerkinElmer model
372). This analysis was conducted at the Colorado State Uni-
versity Fish, Wildlife, and Conservation Biology Department,
Fort Collins, Colorado, USA. The detection limits were differ-
ent between sampling periods as follows; Cd (0.01 mg/L in 2003
vs 0.02 mg/L in 2004–2007), Cu (0.01 mg/L in 2003 vs 0.5 mg/L
in 2004–2007), and Zn (5 mg/L in 2003 vs 0.5 mg/L in 2004–
2007). These detection limits are equal to or lower than those
commonly reported for field assessments in the literature, and
well below any previously reported toxic concentrations for
these metals. These differences in minimum reporting limits
between 2003 and all other years are unlikely to be meaningful.

Benthic macroinvertebrate sampling

Five replicate benthic samples (n¼ 5) were collected using a
0.1-m2 Hess sampler (350-mm mesh net) from shallow riffle
areas (<0.5 m). Representative sample localities were selected
on the basis of the following criteria: location was a riffle or
run habitat unit, depth was 0.10 to 0.25 (m), and substrate
was representative of the stream reach. Overlying substrate
was scrubbed of algae and diatoms, and inorganic debris was
removed. All individual substrate particles larger than 22.6 mm
were removed from the Hess sampler and measured along the
intermediate axis. Underlying substrate was disturbed to a depth
of approximately 10 cm, and the remaining material was sieved
using a 350-mm mesh sieve. All organisms retained were
preserved in 80% ethanol in the field.

In the laboratory, samples were processed to remove debris
and subsampled until 300 organisms (�10%) were removed
from the sample, using methods described in Moulton et al.
[27]. Invertebrates were identified to the lowest practical taxo-
nomic level (genus or species for most taxa; subfamily for
chironomids) [28,29]. The Invertebrate Data Analysis System
(U.S. Geological Survey, USA) version 4.2.10 was used to
resolve taxonomic ambiguities and reduce the influence of rare
taxa on this large-scale regional environmental assessment [30].
Taxa that were not found to occur in at least 20 sites were
dropped from analysis, to reduce the influence of rare taxa on
study results. Ambiguities in community data sets occur when
closely related specimens are identified at different levels of
taxonomic resolution. This usually occurs because the variation
in life history of closely related species results in a wide range of
individual maturity. Characteristics used to separate species or
genera are developed from mature specimens and may not be
present in earlier instars or damaged individuals. As a result, a
sample may contain a group of individuals from the same
family, but not all can be identified to the genus level; the
resulting taxa list may show some identified to genera and
others only identified to family. When characteristics needed to
identify an organism to a finer level (for example, species level)
are not present, assumptions about their identity beyond the
coarser level (for example, genus level) lead to ambiguities.
Including ambiguous taxa in a data set can inflate richness or
other measures of community structure. Ambiguities resulting
from differing levels of identification were resolved by distrib-
uting individuals identified at coarser levels to finer levels
dependent on their abundance.

Means of the five replicate benthic samples, once processed
in the Invertebrate Data Analysis System as described, were
used to calculate benthic macroinvertebrate community metrics
(Table 1) [29]. These metrics were selected based on a literature
review of large-scale (at least 50 locations investigated
in multiple watersheds) bioassessment studies evaluating
the effects of metals on benthic macroinvertebrates
[1,17,18,31,32]. For a comprehensive analysis of stream com-
munities, we sought to include measures of community rich-
ness, abundance, and function. We considered all benthic
macroinvertebrate metrics that were significantly related to
metals contamination from these past studies and refined the
list to include those metrics used in multiple studies or dis-
tinguished between multiple levels of metal contamination in
the Clements et al. study [1].

Data analysis

All statistical analyses were conducted in R version 2.7.2
([33]; http://www.R-project.org). Scatter plots of the data sug-
gested nonlinear and possibly threshold responses by benthic
macroinvertebrate communities. Piecewise linear regressions
[34] fit two linked line segments connected at a threshold where
an abrupt change in response required a different slope to fit the
regression. The threshold and 95% confidence intervals were
estimated using a bootstrap method resampling the raw data
1,000 times [34]. Akaike information criteria (AIC) values were
calculated to determine which of the two competing models
(CCAR or CCU) had the highest probability of being the best
model [35]. We used a version of AIC (AICc) that corrects for a
small sample size. The AICc was standardized by subtracting
the minimum AICc score from each of the candidate model
AICc values to derive DI and facilitated the ranking of candidate
models [35]. Akaike weights (vi) were calculated to determine
the probability of a model being the best model among those in
the candidate set. For thoroughness, Spearman correlations
between the two toxic unit models and habitat variables were
evaluated to determine whether the difference in the predictive
nature between these two toxic unit models was attributable to
collinearity with habitat variables.

Unlike previous research conducted in this region [1,32], the
current study made an effort to target streams with relatively



Table 3. Spearman rank correlations between habitat factors and toxic-unit
modelsa

Variable CCUb CCARc

CFSd 0.39 0.39
Alpine (%)e 0.39 0.44
Forest (%) �0.39 �0.46
Agriculture (%)f 0.11 0.04
Developed (%)g 0.14 0.15
Site elevation (m) 0.25 0.36
Basin area (km2) 0.25 0.19

a Italic correlation coefficients were significant at p � 0.005 to correct for
experimentalwise error (i.e., Bonferroni’s adjustment).

b CCU¼ cumulative criterion unit.
c CCAR¼ chronic criterion accumulation ratio.
d CFS¼ cubic feet per second.
e Sum of area as bare ground and ice/snow.
f Sum of area as pasture and hay.
g Sum of area as residential or commercial development.
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low contaminations of trace metal. We were interested in
determining whether effects could be detected at these lower
metal concentrations. First, data were binned into two catego-
ries of toxic-unit ranges, sample locations with CCAR at least
0.1 and sample locations with CCAR greater than 0.1 but less
than or equal to 1.0. These values were selected because
previous analysis suggests that CCAR¼ 0.1 is the average
background value for all catchments in the study area not
influenced by lithologies with acid-generating capacity or that
release metals into streams. The upper range (CCAR¼ 1.0) was
selected because this value is expected to protect aquatic
communities [21,23]. This approach eliminates leverage on
the statistical model caused by obvious declines in benthic
macroinvertebrate communities at very high metal concentra-
tions. Because nonlinearity and heterogeneity of the response
variables were observed in the scatter plots and sample size was
unbalanced (n¼ 34 vs 74), a nonparametric Mann-Whitney U
test (p� 0.05) was employed to quantify differences between
categories [36]. Percent differences in mean metric values also
were calculated.

RESULTS

Physicochemical characteristics

Habitat characteristics of targeted catchments were typical
of small to mid-sized headwater streams (i.e., 1st to 3rd order)
of the Rocky Mountains and indicated that anthropogenic
influences other than mining (i.e., mean area as agriculture¼
0%� 1 SD, mean area developed; urban and commercial
development¼ 0%� 2 SD) had little direct effect on water
quality and benthic macroinvertebrate communities (Table 2).
The large variation observed in some local (e.g., D50, dis-
charge, and percent cover) and landscape-level (e.g., percent
forest area) parameters were expected because we sampled
catchments underlain by different lithologies to capture a wide
range of both chemical and physical differences of streams
within the study area (Table 2). Spearman correlations (Table 3)
between the two toxic-unit models and habitat variables were
weak (r< 0.6), and no differences were found in the pattern of
intercorrelations, suggesting that differences in the performance
of the two toxic-unit models were not attributable to collinearity
with habitat variables.

Field sites in the current study showed a broad range of
variation in water quality; however, these values were within
the range of water-quality parameters used to develop the BLM
Table 2. Range and mean� standard deviation (SD) for habitat parameter
measured in study catchments

Parameter Range Mean�SD

D50 (mm)a,b 22.6–90 38� 14
CFSc 0.2–137 11� 15
Cover (%)b,d 1–96 58� 29
Alpine (%)e 0–97 36� 28
Forest (%) 2–95 44� 36
Agriculture (%)f 0–1 0� 0.0
Developed (%)g 0–2 0� 0.0
Site elevation (m) 2,329–3,535 2,975� 287
Watershed area (km2) 2–480 36� 58

a Median particle size in millimeters.
b Not measured in years 2006 to 2007.
c CFS¼ cubic feet per second.
d Percent area obscuring the sky.
e Sum of area as bare ground and ice/snow.
f Sum of area as pasture and hay.
g Sum of area as residential or commercial development.
(Table 4) [13]. Exceptions included temperature (3–188C), pH
(3.5–8.5 pH), Cl� (0.04–9.5), and alkalinity (0–141 mg/L),
which were occasionally less than the specified limits of the
BLM.

Comparison of models of trace-metal toxicity

Calculations of CCU in the current study differ from pre-
vious investigations [1] in that toxicity was estimated using total
dissolved trace-metal concentrations instead of total metal
concentrations. However, dissolved metal concentrations were
only marginally lower than total metal concentrations in the
current study. Other studies in this region included Al, Fe, Mn,
or Pb in their calculations of CCU [1,32]. These metals were not
included in our toxic-unit calculations because BLM models are
not available for these metals, and therefore no comparisons
could be made between toxic-unit models. Cadmium, Cu, and
Zn cause toxicity by disrupting similar physiological processes,
unlike the other metals, and these metals were observed at low
concentrations as compared with Cd, Cu, and Zn. Of the four
metals not included in our CCU calculation, Al and Fe exceeded
CCC (87 and 1,000 mg/L, respectively) at two (Al) and one (Fe)
locations. By incorporating these four metals into our CCU
calculation, only 12 additional sites exceed CCU¼ 1. This
demonstrates that few sites (8%) were falsely classified as
below the threshold thought benign to aquatic life, because
we did not include all the metals measured in water in our index
of trace-metal toxicity [1]. Inclusion of these metals in regres-
sion models did not improve model fit.

Chronic criterion accumulation ratio values for the sum of
Cd, Cu, and Zn ranged from 0.02 to 268, whereas CCU values at
these stations ranged from 0.05 to 125. A direct comparison of
the two models of trace-metal toxicity shows that CCAR
underpredicts toxicity, especially at low metal concentrations
(Fig. 2A). Although CCAR calculates the bioavailability of free
metal ions and CCU calculates the bioavailability of total
dissolved metals, the difference in the magnitude of concen-
trations does not explain the underprediction, because each
toxic unit is normalized and therefore unitless. However, by
including DOC in the calculation of CCAR, the amount of free
metal ion available to bind to the biotic ligand is decreased,
especially at low metal concentrations. Chronic criterion accu-
mulation ratio overpredicted toxicity relative to CCU at 20 sites.
In 17 of these cases, alkalinity was less than 8 mg/L, and in all of
these cases the total dissolved metal or free metal ion was
relatively high compared with all other cases. In 11 other cases,



Table 4. Range, median� standard deviation (SD), and biotic ligand model design range for chemical parameters measured in the current study

Parameter Range Median�SD BLMa design range [13]

Temperature (8C) 3–18 9.6� 2.75 10–25
pH (Standard units) 3.5–8.5 6.9� 1.0 4.9–9.2
Dissolved organic carbon (mg/L) 0.3–8.1 1.4� 1.10 0.05–29.65
Humic acid content (%) 10b 10–60
Hardness (mg/L) 5–163 41� 31 NAc

Ca2þ (mg/L) 1.5–45.4 12.0� 8.4 0.204–120.24
Mg2þ (mg/L) 0.2–16 2.2� 2.8 0.024–51.9
Naþ (mg/L) 0.2–36 1.5� 3.1 0.16–236.9
Kþ (mg/L) 0.15–4.2 0.55� 0.55 0.039–156
SO2�

4 (mg/L) 0.7–167 7.8� 28.8 0.096–278.4
Cl- (mg/L) 0.04–9.5 1.20� 1.42 0.32–279.72
Alkalinity (mg/L) 0–141 25� 26 1.99–360
DIC (mmol/L)d Estimated Estimated 0.056–44.92
S2- (mg/L) NMe NMe 0–0
Cd2þ (mg/L) 0.01f–7.92 0.01f� 1.07 NLg

Cu2þ (mg/L) 0.15–935 0.50� 13.6 NL
Zn2þ (mg/L) 0.25h–1940 3.40� 254.81 NL

a BLM¼Biotic ligand model.
b Not measured but default value was used as recommended, 10% [13].
c Not applicable.
d Dissolved inorganic carbon¼BLM estimates DIC from measured values of alkalinity and pH [13].
e Not measured but default value used as recommended, 1 �E� 10 [13].
f Detection limit.
g No limits are set for trace-metal concentrations.
h Half detection limit.
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alkalinity was less than 8 mg/L; however, in these cases CCU
overpredicted toxicity relative to CCAR, and they all had
relatively low metal concentrations.

Each metal’s contribution to a toxic-unit model changed
depending on the concentration of the metal and toxic-unit
model considered (Fig. 2B, C). The BLM incorporation of DOC
resulted in a lower contribution of Cu at toxic-unit values below
10, as compared with CCU. At toxic units of 10 or greater, Cu
was found to dominate toxic-unit values, the result of high
concentrations of Cu, a decrease in the capacity for DOC to bind
Cu, and the inability for hardness to competitively interact
with the biotic ligand to ameliorate toxicity. Most sites with
toxic-unit values of 10 or greater were found to have low
alkalinities and pH and consistently fell below the regression
line (Figs. 3–5). These sample locations were also influenced by
substantially higher concentrations of Al and Fe.

Community-level responses to metals

Piecewise linear regression analyses using AIC for model
selection found that CCAR was the most likely predictor of the
benthic macroinvertebrate metrics (Figs. 3–5). The cumulative
criterion unit received no weight as the top model in most cases,
with the highest observed likelihood¼ 0.07. The threshold for
all metrics evaluated exceeded CCAR¼ 1: richness¼ 1.06,
EPT (EphemeropteraþPlecopteraþTrichoptera) richness¼
1.11, total abundance¼ 1.47, Ephemeroptera abundance¼ 1.21,
Heptageniidae abundance¼ 1.16, predator abundance¼ 1.19,
and scrapper abundance¼ 1.16 (Figs. 3–5). However, in almost
every case the 95% confidence interval ranged well below
CCAR¼ 1: richness¼ (0.17–1.25), EPT richness¼ (0.39–
1.68), Ephemeroptera abundance¼ (0.76–2.07), Heptageniidae
abundance¼ (0.69–1.97), predator abundance¼ (0.89–4), and
scrapper abundance¼ (0.35–1.49), the lone exception being
total abundance¼ 1.47 (1.06–5.52), (Figs. 3–5).

Visual inspection of Figures 3 to 5 indicates that trace-metal
concentrations (characterized as CCAR) caused various effects
in benthic macroinvertebrate communities from central Colo-
rado mountain streams. Slopes for all piecewise linear models
were negative, suggesting negative effects occurred below the
threshold of chronic toxicity. This is also supported by the
confidence intervals ranging well below CCAR¼ 1 (Figs. 3–5).
Results of a Mann-Whitney U test showed significant differ-
ences in mean metric values between background sites and
CCAR¼ 1.0, the theoretical threshold of toxicity (Table 5).
Significant differences were observed in total taxa and EPT
richness (�7 and�6% mean differences, respectively), Ephem-
eroptera and Heptageniidae abundance (�33 and �43% mean
differences, respectively), and predator abundance (�26%
mean difference). The number of samples included in each
category was different, n¼ 34 versus n¼ 74, and although the
ranges of benthic macroinvertebrate metric values were similar,
a proportionately larger number of samples were observed to
have lower benthic macroinvertebrate metric values at
CCAR¼ 1.0 as compared with background (Figs. 3–5).

DISCUSSION

The intent of this work was to develop and evaluate the BLM
as a bioassessment tool capable of predicting benthic macro-
invertebrate community responses to trace-metal mixtures. This
is an important step in improving our ability to link field-based
community and population responses to metal toxicity while
including the modifying effects of water quality in the deter-
mination of trace-metal bioavailability [17,18]. However, the
BLM was developed to predict toxicity to standard test organ-
isms and has not been evaluated to determine whether it can
predict the response of communities to trace metals in surface
water [9]. We developed a toxic-unit model that uses BLM-
derived outputs (CCAR) to predict responses of benthic macro-
invertebrate communities to mixtures of trace metals and
evaluated its performance relative to the CCU. This evaluation
was conducted as part of a regional-scale environmental assess-
ment of the effects of geology on the environment in Colorado,
which provided a diversity of lithologies and physicochemical
conditions to test this new model of trace-metal toxicity.



Fig. 2. Graphs depict the relationship between log10 (CCU) (cumulative
criterion unit) and log10(CCAR) (chronic criterion accumulation ratio) (A),
and the relative contribution of each metal (Cd, Cu, Zn) in terms of toxic units
to CCAR (B) and CCU (C). Filled circles, CCAR versus CCU.
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Streams in the Colorado Rockies are generally oligotrophic,
with low concentrations of dissolved solutes. We observed this
to be true of the streams we sampled, in which most phys-
icochemical characteristics were within the range of those used
to develop the BLM. However, a number of water-quality
parameters (e.g., pH, alkalinity, Cl�) were found to be on
the lower end of the design range. This condition generally
increases the bioavailability of trace metals as compared with
water of high ionic strength and DOC concentrations [5,14].
However, CCAR, which accounts for DOC, measured a
decrease in trace metal available as compared with CCU in
streams with relatively low metal concentrations. In contrast, at
locations where low pH and high trace metal concentrations co-
occurred, CCAR predicted higher toxic-unit values as com-
pared with CCU. This increase in trace-metal bioavailability
was substantial and demonstrates that low pH can overwhelm-
ingly increase trace-metal toxicity despite the influence of other
water-quality parameters [8]. These results highlight the need to
incorporate a suite of water-quality parameters that can affect
trace-metal bioavailability in field studies [16,17].

Chronic criterion accumulation ratio is far superior to CCU
as a predictor of benthic macroinvertebrate community
responses to metal mixtures. We anticipated that CCAR would
outperform CCU because CCAR incorporates a mechanistic
understanding of the chemical processes that control trace metal
bioavailability to aquatic organisms and accounts for physio-
logical processes. However, the BLM was recalibrated to model
invertebrate responses to acute concentrations of free metal ion;
mechanisms of toxicity to chronic exposure to trace-metal
mixtures may be different [19]. Under conditions of chronic
exposure, benthic macroinvertebrates regulate, detoxify, and
eliminate metals, processes not modeled by the BLM [37,38].
Nor does the BLM recognize the accumulation or regulation of
metals through the diet [38]. Our empirical statistical analysis
suggests that CCAR is a better predictor of benthic macro-
invertebrate community responses as compared with CCU;
however, this approach should be improved on to make it more
mechanistic.

We identified that benthic macroinvertebrate community
metrics exhibited a threshold response to trace-metal mixtures.
The 95% confidence interval for this threshold included
CCAR¼ 1 in every metric except for total taxa abundance.
This finding could be interpreted as evidence that the CCC or
the BLM are protective of aquatic life; however, this is not the
case. The piecewise linear models identified a threshold at
which higher rates of decline in benthic macroinvertebrate
community metrics were observed at CCAR near 1, whereas
lower rates of decline were observed at CCAR< 1. We con-
clude that profound changes in aquatic communities were
observable near CCAR¼ 1, whereas measurable but highly
variable responses were observed at toxic-unit values below 1.

Previous studies report significant reductions in community
richness and abundances of sensitive taxa at 2 CCUs or greater
[1,39]. Other researchers suggest that benthic macroinverte-
brate communities responded negatively to trace-metal mix-
tures only once concentrations exceeded the threshold of
chronic toxicity, CCU¼ 1.0 [32]. The results of our study
corroborate earlier findings that trace metals negatively affect
benthic macroinvertebrate communities at or near water-quality
criterion. Novel to our study are data that suggest losses in
benthic macroinvertebrate richness, abundance, and function
occurred at concentrations below the CCC. These previous
studies included other metals (Al, Fe, Pb) into their calculation
of CCU, or utilized total metals [1,39] or total dissolved metals
[32], which would increase the toxic-unit values at all sites,
forcing the observed declines in benthic macroinvertebrate
communities to occur at higher toxic-unit values. Our direct
comparison of the predictive capacity of free metal ion versus
the total dissolved metal fractions suggests that the free metal
ion is a better predictor of biological responses. Had earlier
investigations considered free metal ion concentrations, likely
their observations of adverse effects would occur at lower toxic-
unit values.

Our observed changes in benthic macroinvertebrate com-
munities below CCC does not mean that water quality standards



Fig. 3. Piecewise linear regressions showing the relationship betweenbenthic macroinvertebrate community richness metrics and log10 (CCAR) (chronic criterion
accumulation ratio). Summaries of model selection analysis are depicted in the table showing Akaike information criteria values. Vertical lines indicate the limit
above which adverse effects in aquatic communities are expected. Horizontal segmented lines are the piecewise linear association between richness metrics and
CCAR. The 95% confidence interval for piecewise threshold is depicted by horizontal arrows and brackets, and the threshold is identified as the black circle within
the confidence intervals. AIC¼Akaike information criteria; AICc¼ second-order correction of AIC to account for small ratio of model parameters (K) to
observations (n); DI¼AICc standardized by subtracting the minimum AICc score from each of the candidate models; vi¼Akaike weight or the probability the
model is the best model among the candidate set; CCU¼ cumulative criterion unit; EPT¼EphemeropteraþPlecopteraþTrichoptera.
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or the BLM are not protective of aquatic life in Rocky Mountain
streams. Water quality standards were established to protect
95% of genera [21] in a water body, not just benthic macro-
invertebrates. Because we did not measure responses in
all the necessary phyla, classes, and families (e.g., fish, algae,
crustacean) specified in the guidelines for deriving water
quality criteria [21], we did not test the suitability of these
standards to protect aquatic life. Also, water quality standards
were established to protect aquatic communities in receiving
waters of the discharge of a single pollutant, not nonpoint
sources of complex trace-metal mixtures. However, we
suggest that if water quality criteria are used as a benchmark
of successful restoration of complex acid rock drainage,
benthic macroinvertebrate communities exposed to trace-metal
mixtures at these concentrations may not recover to levels
found in streams with lower concentrations of trace-metal
mixtures.

The observation that population-level abundance metrics
suffer greater losses than richness metrics when exposed to
similar levels of metal mixtures is not a novel finding. Previous
Fig. 4. Piecewise linear regressions showing the relationship between benthic m
criterionaccumulation ratio). Summariesof model selectionanalysis aredepicted in t
limit above which adverse effects in aquatic communities are expected. Horizontal s
and CCAR. The 95% confidence interval for piecewise threshold is depicted by hor
within the confidence intervals. AIC¼Akaike information criteria; AICc¼ second-
observations (n). DI¼AICc standardized by subtracting the minimum AICc score f
model is the best model among the candidate set.
studies, both field and laboratory based, have documented that
sensitive mayflies and stoneflies experience population declines
at much greater rates than observed in generic-level total taxa
richness [1,40]. Furthermore, single species toxicity tests using
a sensitive mayfly of the genus Rhithrogena have shown
that mature nymphs can tolerate very high metal concentrations
and survive an acute exposure, whereas populations of
less mature individuals suffer great loses at lower metal
concentrations [39–41].

The current study confirms that richness metrics are not the
most sensitive indicators of the effects of trace-metal mixtures
on aquatic communities in streams. However, we observed
great declines in the abundance of metal-sensitive benthic
macroinvertebrate populations in response to levels of trace-
metal mixtures never reported before. Such declines in abun-
dance cause disruptions of in-stream ecosystem function such as
the processing of detritus, secondary production of inverte-
brates, and flow of energy into food webs [42]. This disruption
of energy flow into food webs is not limited to aquatic food
webs, because disturbance-induced declines in abundance of
acroinvertebrate community abundance metrics and log10(CCAR) (chronic
he table showingAkaike information criteria values.Vertical lines indicate the
egmented lines are the piecewise linear association between richness metrics
izontal arrows and brackets, and the threshold is identified as the black circle
order correction of AIC to account for small ratio of model parameters (K) to
rom each of the candidate models. vi¼Akaike weight or the probability the



Fig. 5. Piecewise linear regressions showing the relationship between benthic macroinvertebrate community functional metrics and log10(CCAR) (chronic
criterionaccumulation ratio). Summariesof model selectionanalysis aredepicted in the table showingAkaike information criteria values.Vertical lines indicate the
limit above which adverse effects in aquatic communities are expected. Horizontal segmented lines are the piecewise linear association between richness metrics
and CCAR. The 95% confidence interval for piecewise threshold is depictedby horizontal arrows and brackets, whereas the threshold is identified as the black circle
within the confidence intervals. AIC¼Akaike information criteria. AICc¼ second-order correction of AIC to account for small ratio of model parameters (K) to
observations (n). DI¼AICc standardized by subtracting the minimum AICc score from each of the candidate models. vi¼Akaike weight or the probability the
model is the best model among the candidate set.

Table 5. Results of Mann-Whitney U test showing the mean� standard deviation metric values between background CCARa and the threshold of chronic
toxicity

Richness metrics Abundance Functional

CCARa n Total taxa EPTb Total taxa Ephemeroptera Heptageniidae Predator Scrapper

0.1 34 19.7� 2.2 A 11.2� 1.6 A 591� 491 171� 114 A 28� 28 A 86� 62 A 67� 60
1 74 18.4� 3.3 B 10.5� 1.7 B 566� 539 114� 75 B 16� 12 B 64� 38 B 54� 48
% difference �7 �6 �4 �33 �43 �26 �19

a CCAR¼ chronic criterion accumulation ratio.
b EPT¼ ephemeroptera þ plecoptera þ trichoptera.
Capital letters designate significant differences between metric values determined by Mann-Whitney U test (p� 0.05).
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immature insects has been likened to declines in the emergence
of adults [43]. Because terrestrial predator density is controlled
by, among other things, the productivity of emergent adults
[43,44], in-stream disturbances that cause declines in the abun-
dance of benthic macroinvertebrates also limits the food supply
to highly dependent terrestrial consumers [43]. Little is known
about functional changes to streams in response to disturbance;
however, what is known suggests that functional measures are
highly sensitive to disturbances, and changes to in-stream
function can propagate effects into adjacent terrestrial ecosys-
tems. Future research should focus on the influence of chemical
stressors on both in-stream function and also reciprocal changes
in the structure and function of dependent terrestrial consumer
communities.

CONCLUSIONS

We developed a toxic-unit model using BLM outputs
(CCAR) and compared it with CCU to determine which model
best predicted benthic macroinvertebrate community responses
to trace-metal mixtures. The CCAR was a superior predictor of
community responses because it uses the latest knowledge in
aqueous geochemistry and physiology of aquatic organisms to
predict metal toxicity. Great losses in benthic macroinvertebrate
community structure and function were observed near the
threshold of chronic toxicity, CCAR at least 1. We report the
first measureable losses in benthic community structure and
function at a concentration of metals previously thought benign.
Our results suggest that CCCs for metals in mixtures are not
protective against losses in benthic macroinvertebrate commun-
ity richness, abundance, and function in Rocky Mountain
streams draining mineral deposits.
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